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Abstract

Unmanned Aerial Vehicles (UAVs) have the potential to assist us in real-
world problems. Complex challenges like Transportation, Aerial Survey can
be solved by the use of Swarm Robotics. In this project, We focus on new
technologies in UAVs and their Algorithms that allow individual members
of the swarm to communicate, plan, and coordinate their flight efficiently.
We surveyed the existing method for Aerial Swarms, its computation, and
cost required. We implemented swarm in drones using Real-time kinematic
(RTK) GPS. We aim to build a system which can work on indoor areas and
heavy industries where GPS estimates are not available. Our method is to
use the Ultra-Wide Band (UWB) sensors for localization of UAVs. We have
compared the different Gaussian filters like Recursive least square, Kalman
and Information Filter. These algorithms are used to estimate position by
fusing this sensor with the accelerometer, then evaluated the sensor accuracy
both in static and dynamic mode. After this relative positioning, we explored
some of the decentralized Flocking algorithms that will help the swarm to

navigate and perform some tasks like shape formation.

Keywords:- Unmanned Aerial Vehicles, Gaussian filters, Swarm Robotics,
GPS denied Navigation
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Chapter 1
Introduction

Autonomous aerial systems capable of sensing and perceiving the environ-
ment have been the area of intense research due to their limitless applica-
tions, ranging from surveillance, precision agriculture, infrastructure inspec-
tion, photography, recreation etc. Unmanned Aerial Systems (UAS), such as
quadcopters and unmanned helicopters, offer robust maneuverability with
vertical takeoff and hovering capabilities on the three-dimensional airspace.
They can perform tracking kim2008moving inspections nigam2011control
and transportation raptopoulos2016transportation more quickly, econom-
ically, and safely compared to other comparable robots. The deployment
of sophisticated sensors is incrementally enhancing the intelligence of these
aerial robots cai2014survey enabling them to achieve autonomous naviga-
tion in complex and confined environments. The applications related to in-
spection and surveillance of commercial installations require these UAS to
operate in GPS shadow areas where GPS signal reception may be diminished
and less reliable. Further, the reliance of magnetometer for heading estimate
is severely compromised if the UAS has to operate near large iron structures
such as large cranes due to magnetic deviation.

Indoor Positioning System (IPS) becomes critical for many autonomous
operations requiring application of UAS in GPS denied environments. Visual
odometry for mobile robotics using feature tracking based on monocular and
stereo-vision has been an active area of research to address indoor localiza-
tion scaramuzza2011visual; achtelik2011onboard; achtelik2009stereo How-
ever, the solutions are sensitive to ambient lighting conditions, motion blur,
and other artifacts that deteriorate image quality. Visual-inertial methods
improved localization precision by eliminating scale factor error in the image
with the fusion of inertial measurement unit (IMU) data delmerico2018benchmark
The accumulation of drift in these methods are typical over time, thus can-
not be used for long duration flights. Other SLAM based approaches pop-
ular among ground robots either use RGB-D cameras kerl2013dense or 3D
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lidars xu2018slam However, these approaches are often computationally ex-
pensive and time-intensive. They typically require onboard GPU computing
ability to process the data in real-time, which increases the power require-
ments and the overall weight of the system, thereby further compromising
the endurance of aerial vehicle.

The wireless localization system, such as Radio Frequency Identification
(RFID) zhou20091fid Wi-Fi polo2014semantic Zigbee watthanawisuth2014design
and Ultra-Wideband (UWB) alarifi2016ultra are emerging technologies for
indoor localization solutions. Due to the unsatistied accuracy of the received
signal strength (RSS) techniques ruiz2011accurate they have not been found
suitable for UAVs. Recently, UWB based technologies have gained momen-
tum in this field. With the large bandwidth, this signal has the properties of
strong multi-path resistance, which enables accurate ranging via communi-
cation by the two-way time of flight. They are low-cost, low-power, portable,
robust and easy to implement in any environment.

The present work is an extension of the approach followed in gaur2018low
which focused on developing a pose estimation framework for a quadcopter
relying on MARG (inertial) sensor array, an optical flow camera, and an
Ultra-wideband (UWB) range sensor to correct the drift of the estimator over
time. In this paper, use of multiple UWB sensors is proposed along with in-
ertial sensors without any optical cameras for localization. Although some
earlier research has focused on implementing Bayesian filter based state es-
timation using UWB sensors mueller2015fusing; li2018accurate it did not
focus on optimizing the performance. The method used in this research aims
to reduce the complexity of the algorithm using the extended information
filter. The Gaussian filters require a model of the system, comprising of a
state function, measurement function, and the associated noise terms. The
noise terms related to it are often difficult to estimate. The inaccurate noise
model can cause perturbation in the estimation, which will lead to diver-
gence of the filter. There are optimal ways to adapt a filter according to the
need yang2006optimal Noise covariance can be estimated by minimizing the
cost function, with the known ground truth of the vehicle. In this paper, var-
ious criteria for tuning the filter are discussed, and the Particle Swarm Opti-
mization (PSO) is used for determining the best noise covariance.

Real-time tracking of the heading angle in rigid bodies has wide appli-
cations in robotics fields barshan1995inertial Inertial and magnetic sensor
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modules with their associated data filtering algorithms are designed for esti-
mating the attitude of the object mahony2008nonlinear The famous estima-
tion algorithms such as madgwick2010efficient allows accurate evaluation of
pitch and roll attitude but are not robust for yaw estimations over time. The
sources of magnetic interference are always present in common items such
as current-conducting wires, batteries, and ferrous materials. Today there
are many hybrid solutions such as bentley2016wireless with expensive mul-
tiple sensors, to be used in the industrial environment for the estimation of
the heading. This paper proposes to solve the problem of yaw estimation
through a novel low-cost yaw estimation method without drift which can be
used on UAS as fail-safe in the event of deterioration in yaw estimates from
conventional MEMS magnetometers.

The remainder of the paper is structured as follows: the background work
and problem statement is summarized in Sec. II. The localization and head-
ing algorithms are given in Sec. III. The method of tuning the noise parame-
ters based on PSI is given in Sec.IV. The experimental results and discussion

are provided in Sec. V and concluding remarks are given in Sec. VL
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Localization

Robot localization is the process of determining where a mobile robot is con-
cerning its environment. All mobile robot irrespective of the work they do,
they first need to understand where they are located. After knowing their
current location, they can decide and perform any future actions instructed
to them. Apart from basics navigation, mobile robots also needed position
teedback for their controller to function. Today we came across a lot of im-
provement in this part due to the development of different types of low-cost
electronic sensors. We will categorize the sensors based on the usability in
the environment. Then we will see their estimation accuracy, computation,

and their scalable factors in real-world projects.

2.1 Sensors

2.1.1 Global Possitioning System (GPS)

GPS is a satellite navigation system that gives location and time informa-
tion. The principle of GPS is based on time difference taken by the signals
to travel from satellite and sensors, with the help of approximated speed of
the electromagnetic wave in the atmosphere we can calculate the distance
between satellite and sensor. The exact location is determined by the trilat-
eration method, minimum there should be at least four satellites. Minimum
three satellites are used to trace the location and fourth one used to confirm

the position.

2.1.2 Real Time Kinematic (RTK-GPS)

As the GPS signal travels through the Earth’s atmosphere, it gets delayed.
Many factors like climate, electromagnetic fields can increase position error
in GPS. We assume that these factors do not change much in one area. In
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RTK-GPS two receivers are used, one is a stationary called base station, an-
other one is a rover fixed on the vehicle. Both the GPS sensors undergo the
same deflection from the atmosphere; the base station measures errors and
transmits corrections to the rover.

We have experimented of localizing the drones with the help of GPS and
RTK GPS and have differentiated the results, the massive improvement in
the RTK algorithm was observed

GPS Experiment
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FIGURE 2.1: Location of RTK-GPS vs Normal GPS in a Static
position Test

Position Error Normal GPS RTK GPS
Mean 1.2m 0.08m
Maximum 3.4m 0.15m

TABLE 2.1: Accuracies of above plotted graph

2.1.3 Vision Based:

It is the computer vision task of retrieving the pose of the camera given a
query image of it. This method involves using an optical sensor like monoc-
ular camera, stereo camera, depth camera, Lidar laser, Optical flow sensor,
etc., The workflow of most of the algorithms are common first process is envi-
ronmental perception which will detect image features. By the model of sense
they will apply localizing algorithms which will predict its location. There
is huge growth in Map-building and map interpretation methods, but they
need a lot of computation and features. Some navigation system is a part
of SLAM (simultaneous localization and mapping), which can even reconstruct
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the environment. As our problem is for finding localization solution on any
environment, we will not concentrate on these Map-based localization tech-
niques. On the other hand, Visual data are grouped into local, global and
hybrid features. Based on feature representation algorithms are applied.

¢ Global Features: Advances on Neural Networks helped us to localize
in large scale estimates. Visual Place Recognition is one of the methods
used for recognizing the environment by the robot with CNN.

e Local Features: It will depend on pixel level differences in consecutive
images. Picks selected features in image like Edges, Geometry, Color of
the environment. Some of the famous features to track are SIFT, SURF,
ORB. Recently localization using monocular cameras is effective using
the method. Solution s like ROVIO, VINS-Mono, MSCKEF, SVO vision
techniques are compared here][].

2.1.4 other techniques:

Improvement in embedded system has led to many new type of sensor in the
market. They are not exploited much compared to above mentioned sensors.

Received Signal Strength (RSS) — This method uses wireless sensors for
signal transmission. RSS method relies on a path loss model, where the dis-
tance between receiver and transmitter is inferred by measuring the energy
of the received signal. Not reliable, as some times it involve discontinous
change of location. Wifi, Bluetooth are generally used communication in this
method.

Angle of Arrival (AOA) — The AoA method measures the angle between
the node and the incoming signal using typically multiple (array) antennas.
By measuring the angle to three transmitters in 3D, the location of the re-
ceiver is found at the intersection of the three lines. Needed noise less envi-
ronment such as underwater place, and complex instrument for precise angle

estimation.

Time of Arrival (TOA) - The distance between the moving target and the
tixed anchors is proportional to time taken by the signal to transmit. This is
one way communication,and all the devices in the system should be synchro-
nized. Signals like IR(InfraRed), Ultra Wide Band (UWB), Ultrasonic sound

are sended between devices.
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2.2 Ultra-WideBand sensor

The Ultre Wideband (UWB) technology has been the subject of extensive re-
search in last two decades. It has emerged as promising candidate for many

wireless applications, sensor networks and minimum computation.

(B) Pin Diagram

(A) sensor model

FIGURE 2.2: Ultra-WideBand Sensor-Decawave dwm1001

This is mainly due to its large system bandwidth (occupies more than 5
GHz of spectrum) which offers high accuracies with low-power/cost imple-
mentation.The signals are extremely short pulses with low power spectral

density.
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FIGURE 2.3: Frequency plot of Ultra Wideband
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2.2.1 Working Principle:

Ultra-wideband (UWB) is a radio technology based on the IEEE 802.15.4a
and 802.15.4z standards that can enable the very accurate measure of the
Time of Flight (ToF) of the radio signal, leading to centimeter accuracy dis-

tance/location measurement, range upto 200m.
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Infrastructure-Based
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Phase Difference of Arrival

Location/Navigation Services

FIGURE 2.4: Working of Ultra-WideBand Sensor (dwm1001)

Time Difference of Arrival — The TDoA method is very similar to GPS.
Multiple reference points, called anchors, are deployed in a venue and are
time synchronized. The mobile devices will beacon, and when an anchor re-
ceives the beacon signal it will timestamp it. The timestamps from multiple
anchors are then sent back to a central location engine which will run mul-
tilateration algorithms based on Time Difference of Arrival of the beacons
signals to compute the X, Y, Z of the mobile devices.

Phase Difference of Arrival (AOA) —-The PDoA method consists of com-
bining the TWR scheme that delivers the distance between two devices with
the measure of the bearing between the two devices. The combination of
distance and bearing allows the calculation of the relative position of two de-
vices without any other infrastructure. To do so, one of the devices carries
two antennas and is able to measure the Phase Difference of Arrival of the

RF signal.
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State Estimation Algorithms

We have seen a lot of sensors, each can vary for purpose and environment
of use. Each sensor will provide bias, The bias is dependent on temperature,
environment and several other factors that cause it to slowly change over
time. These noise depend on the sensor sensitivity and calibration, generally
expensive sensors are prone to environmental changes and vibrations. Noise
causes issues to state estimator, we can’t rely on a single sensor or estimation
technique. We will explore family of Gaussian filters algorithm and use the

best to fit our purpose.

3.1 Least Square regression

The method of least squares is about estimating parameters by minimizing
the squared discrepancies between observed data.This method is computa-
tionally convenient technique to fit data. It corresponds to maximum likeli-
hood estimation when the noise is normally distributed.

Let x be variable which sensor is measuring (eg: current) and y be Output

variable shown by the sensor by some linear function (eg:voltage)
Linear System Model y = Hx + v

v is the some sensor noise After getting many observations we want fit this

system and estimate a sensor measurement £.

A

The error term willbe &=y — H%

We will define a cost function for this and try to reduce this error as possible

and fit it in our equation.

costfunction [ =el+e&3+..+e

J=y—-Hx2)" (y—Hx%)
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In order to minimize ] with respect to £

0
2y"H+22THTH=0
Solving for %, = (HTH)'HTy
There are a lot of modified versions other than this basic model, We will

see how to apply this method in our Position Estimation using Ultra Wide-
band sensor Now consider the above figure. Let A, B, C, D be the fixed

Alxy, y1,21)
@
d
" P(x, v,
b P
@ . dy @ Dlxy, vy, 24)
Blxy, 2, 23) -+ >
O X
CI_:.,
@

Clxy, ¥1.23)

FIGURE 3.1: Setup of Working Environment

anchors with respect to a frame of reference xyz (fixed) whose values are

known.P for the vehicle point which we estimate by the sensor which pro-
vides distance d1, d2, d3, d4.

(P—AP=d ..(1) (P-BY?=d ..(2)
(P-C)P?=d ..3) (P—D)*=d3 ..(4)

Subtracting (2), (3), and (4) from (1) we get:

2(B—A).P=d;—d5—B*— A?
2(C—A).P=d?—di—C>2— A2
2(D—A).P=d?—d2—D>— A?
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P=(xy,z) A= (x1,y1,21) B= (x2,y2,22) C = (x3,y3,23) D = (X4, Ya,24)

Xo— X1 Ya—y1 Z2—7 x d3 —d5 — B> — |A|?
2X |x3—x1 y3—y1 zz3—z1| X |y| = |d2 —d5—|C|*>—|A|?
X4 —X1 Y4—VY1 Z4—2q Z d%—di—!Dlz—\Alz

We obtain the y = Hx form. If we solve exactly some times there will be
no solution, We can use least square to obtain the estimted £. This time let’s
apply Recursive least square method as sensor is dynamic,we will modify

the equations to reduce the big matrix and to be robust.

3.2 Kalman Filter

The Kalman filter operates by propagating the mean and covariance of the
state through time. One remarkable aspect of the Kalman filter is that it is op-
timal in several different senses. The filter is constructed as a mean squared
error minimiser, but they are recursive and at the same time carry previous
state to reduce uncertainies and noise in the new measurements. The de-
tailed derivation of kalman filter is on ??.We will see its implemetation in our
model. Let us give you a idea of Kalman Filter and see its implementation
with our sensors.

State Space — The state of a dynamic system is the smallest vector that sum-
marises the past of the system completely. Knowledge of the state allow pre-
diction of future dynamics and outputs the deterministic system in absence
of noise. In our problem let us assume (xy) is the state vector of the process
at time (k).

Calculate Noise — To perform calculation despite measurement noise. The
state is represented as a mean (1) and variances () of the normal distribu-
tion. The variance indicates the confidence level of the value. From previous
section, to minimise the cost function (J), we model the system error using
Gaussians distributions. Py = E [(x — Xo)(x — %0)"]

The Recursive steps of the kalman filter are

e Known Variablesare £;-State ,u;-Control ,P-Covariance y,-Measurement.

State Prediction x; = F.X;_1 + G.uy

Measurement step y, = H.x
Calculate Kalman gain K; = P, H! (HPy_1HT +R;)
Update the State  X; = x¢ + K (yx — Hixg—1)
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3.2.1 Extended Kalman Filter-EKF

Many practical systems have non-linear state update or measurement equa-
tions. The EKF handles nonlinearity by linearizing the system at the point of
the current estimate by the taylor series, and then the linear Kalman filter is
used to filter this linearized system. It was one of the very first techniques
used for nonlinear problems, and it remains the most common technique.
Coming to our Problem, We are getting the range from anchors, and our
quadcopter is equiped with Inertial Measurement Unit (accelerometer + gy-
roscope + magnetometer). Let us form our System equation and measure-
ment model based on this information. And then apply the Kalman Filter to
it.Directly integrating the acceleration from IMU lead to worse results, so we
also consider the acceleration bias(a;) in every step.
In the EKEF, the state vector consists of position,velocity and acceleration bias

in all the three directions. x = [px, Ux, @by, Py, Uy, Apy, Pz, Uz, ap| "
—T? —T?

2 T

We are using the Newton dynamics, x; = x4 +o*x T 4 ax*

A, 0 0 1T_TT2
Ae=|0 A 0|, A=|g 1 r
0 0 4 00 1
B, 00 _TTzoo
Be=10 B 0/, B=1 7T 00
0 0 B 0 00

With the assumption that IMU readings are corrupted with Gaussian noise,
we use T, to measure IMU noise. Similarly, 7, is used to measure the uncer-
tainly of the estimated acceleration bias. The process noise is designed by the
piecewise white noise as described in [].

-T3Ta i T5Tb TZTa i T4Tb _T3Tb-
3 20 2 8 6
Q 0 0
/ / T2 T4 T3 T2
Qk — 0 Qk 0 , Qk - ZTIZ + Trb TzTg + TTb —?Tb
0 0 Q
T3Tb TZTb
__- " - —T3
i 6 2 ]
. X = Arxr_1 + Be_quy_
Update equation * kLT Pkl 3)

Py = AxPe 1 AT+ Qrq
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In Previous section, We seen the configuration of the system, the predicted

distance between vehicle and anchoris, ric = /(x — x;)2 + (y — y;)2 + (z — ;).
This Measurement model is in nonlinear form. The correction step differs,

from a linear form. Compute the measurement model Jacobians at xy,

¥i = h(x;, ny) Hy =20

In our case mesurement step, Jacobin computed is
X—X; X—X; X—X; T
Hk = [T/ 0/ 0/ TII 0/ 0/ TI:|

Next steps like Kalman gain, Update Step are same as Linear one.

In practice, the IMU readings are quite noisy, which means that relying too
much on the IMU is impractical as well. Usually we tend to rely more on
UWB readings when tuning the covariance matrices Q and R, with the price
that the jumping of UWB readings will result in sudden change of the esti-
mated position.

To alleviate such problems, we compute the difference between predicted
distance r; and actual measurements yy, dy = r¢ — yx. If di is over a certain
threshold, eg., 2, the update step for x; is discarded. We also tested different
models, in one of the model we added velocity update step, as our Flight con-
troller (Pixhawk) velocity output shows better results than from this method.

3.3 Information Filter

The dual of the Kalman filter is the information filter (IF). standard informa-
tion filter has the same assumptions, propagate through gaussian belief as the
Kalman filter. The key difference is representation of gaussian belief. Gaus-
sian are represented by (mean, covariance) in Kalman, while in information
filter gaussian are in cononical form, which comprised of information matrix
and an information vector. This leads to modification of the equations. The
information filter tends to be more stable. The Information filter algorithm
is more stable than the kalman in many robotics appilcation. When there is
a large uncertainity in sensor measurement, in kalman the X tend to infinity,
where as in information filter (3 = 0. Canonical parameterization represent
probability in a logarithmic form. In multi-robot problem integration of sen-
sor data collected decentrally will be achieved by summing up through Bayes
rule.
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Canonical Parameterization :-
Gaussian is represented by vector(¢) and a matrix(Q2). The Information matrix(Q2)
is the inverse of covariance matrix(X). The Information vector(¢) is defined

as

Q=31 Y. — covariance

F=x"1yu Y — mean

Information filter algorithm.
e O) = (AkQ]:_llA,f + Qk> B Prediction Step
«E=0y (Ak()k—_llA,f + B, uk)
o O =0+ HkTQk_lHk Measurement Step
o« =&+ HIQ e

Extended Information Filter:
We use the same method of deriving extended kalman filter by kalman filter,
here also same taylor series expansion is applied. For nonlinear measure-

ment equation the modified equations are

Vi = h(fy) + e nonlinear measurement step
Gk = &+ HI Q 'y — () + Hy ]

Information filter is the best algorithm in many robotic situations. But the
Gaussian approximation of noise causes the problem in some cases. Particle
Filter is currently one of the best estimation algorithm, which can combine
measurements of any probability density distribution, but the only problem

is it required more computation than these Gaussian filters.
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Chapter 4
Experimental setup

We have conducted two broad experiments and validated results based on
the above theories.Our full software architechture was build on ROS(Robot
Operating System),which will be running on onboard computer(Raspberry
pi-3). Our drone has Pixhawk Flight controller running px4 software, it pro-
vides us the acceleration and velocity data. The ground truth for all experi-
ments was taken by the vicon (indoor positioning system based on group of
infra-redcameras, which can provide millimeter level precision.)

In the first one, we tested four UWB sensors as anchors on the walls of the
building (Static) as shown in Fig(3.1), We moved our vehicle fitted with tag
UWB sensor.We recorded this data with ground truth as vicon.

In Second experiment, we tried our swarm system, in which three quad-
copters are there, we fitted two UWB modules on each of the drone, as UWB
modules can act as either Anchor(sending signal) or tag(reciving signal) at a

time.

____——-}

Y

A7

FIGURE 4.1: Setup of Working Environment
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Chapter 4. Experimental setup

4.0.1 Results

Trajectory
Vicon- @
. EKF -
L=y Least sq- @

Y axis W
4

(A) Comparison of Estimation algorithms

Static UWB_test
4 [Flltered_pose/vector/x
— [Flitered_pose/vector/y
— Irpn_cllent_node/vicon/pose/pose/position/x
— Irpn_cllent_node/vicon/pose/pose/position/y
2}
€
i o R, P N
e e e D TR T o
5 Ll
-4}
2 r ) % 100
time +1.5610661e9

(B) varying position(x,y) with time EKF vs Vicon

FIGURE 4.2: Experiment-1 Testing of single UWB sensor on ve-
hicle

In Experiment-1, we got a positive results, all the estimation algorithm
were tested, We can see the 2D trajectory of the vehicle with ground truth as
Vicon. The estimates are fair enough for precise indoor navigation, vehicle

can be stable. The EKF outputs pose at 50 Hz, while least square output is at

10Hz.
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We can see that the convergence of filter, we have tested this static cases
many times on indoor 10m x 10m area. It gave perfect results.

Altitude comparison

Vicon- @
EKF-
Least sq- @
15}

1.0}

Height

05}

L

100 liO 140

léO léO 260
Time +1.561066e9
This is one of advantages of sensor fusion. Least square we can’t do sensor
usion, which led to bad estimate of height. While in EKF, we incoparated

height changes due to barometer reading given by pixhawk.

Position Error Xaxis Y axis Z axis
Least sq 0.103m 0.117m 0.653
EKF 0.096m 0.109m 0.097

TABLE 4.1: Accuracies of Experiment-1

In the second Experiment when UAV goes into unknown environemt as
mentioned before the configuration is defined.

FIGURE 4.3: Experiment-2 X axis distance vs Time
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The X co-ordinates that was parallel to the anchor and vehicle vector estimate
was good with a error of 0.2m. But the error in the Y co-ordinate was tremen-
dous, it was not stable. This is one of our best estimation other estimates it
diverged a lot.

NN\

FIGURE 4.4: Experiment-2 X axis,Y axis distance vs Time

The Second Experiment result gave us answer and suggestion to many prob-
lems. We can’t try Least square method in the moving anchor, as the equation
cannot be reduced to a linear form Y = A X. This indoor localization method
is similar to GPS, so we came to conclusion there should be atleast four an-
chors to determine exact location in space. Even though the exact localiza-
tion, we can’t obtain precisely with this method in moving anchors,we can
try some other methods/filters in future. Another suggestion to this problem
is with the help of relative localization if we work some methods in pathplan-
ning we can get good result out of it.
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Chapter 5

Path Planning

Motion Planninig is the process of determining where to go based on a set
of objectives and goals. Based on the environment geometry, and our robot
dynamcis, we want to compute a continuous sequence of collision free robot
configurations connecting the initial and final configurations. There are a lot
of sub-categories like Path coverage, Optimizing path, exploring unknown
areas,etc., We will concentrate on Multiagent path finding.

The basic step of swarm is aggregation of robots. Self-aggregation is the
grouping of certain number of objects in one place, also it is a frequent be-
haviour in natural world. After that we will see some navigation algorithms
that will consider multiple autonomus robots and obstacles in the 3-D envi-

ronment.

5.1 Boids Model

Boid Guidance Algorithms (where “Boid” stands for “Bird android”) are
rule-based guidance methods inspired from observations of animal flocks
and swarms. It was proposed that these complex emergent behaviors could
be explained if each animal agent were to follow a set of very simple rules.
The combination of these rules can lead to seemingly intelligent behavior.
The three simple rules are

Avoid rule is meant to prevent robots from colliding with their flockmates.
Every flockmate within the avoidance range forces the boid to move away
from that flockmate. Each have a region r as the safe zone, if any other comes
inside, virtual force will repel both.

Align rule causes boids that are part of same group to have same general
direction. The virtual force match ist heading to the average heading of the
group. This will make the group to navigate in a order rather random.
Aproch makes robots move towards the center of the group of flockmates.
Each robot attracted by gravitational force towards the center of all bots in
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neighborhood range. Bots are not scattered which will be difficult to monitor

or for cooperative tasks

COHERE AND
ALIGNMENT

ALIGNMENT

FLOCKVISION SCATTER

FIGURE 5.1: Three rules of Boids Algorithm

This simple algorithm can be applied in a decentralized manner to any num-
ber of vehicles. The vehicles also can navigate as a group and avoid obstacles
in the path. We have implemented a basic flocking algorithm in simulation
on a computer. We will try to fit our constraints of UAV’s into it and test it

soon.

5.2 Conflict Based Search

Multi-Agent Path Finding (MAPF) is ongoing research topic in both Arti-
ticial Intelligence and robotics field. MAPF solver find collision-free paths
for hundreds of agents in discretized environment. Unlike flocking Algo-
rithms, MAPF has tons of applictions like industries/warehouse where mul-
tiple drones can be used to carry objects, survey from predefined initial,final
points and known map of environment. There are a family of algorithms on
this topic but we specifically look on conflict based search

Conflict-based search uses bounded-suboptimal MAPF solver that plans
for each agent independly.CBS Algorithm takes all the possible path for each
and every bot from start to goal by the use of AStar.Then it recursively checks
if their is any chances of collision of any bot, it rejects path having chances of
collision and finally gives the path having minimum cost. Currently it was
experimented by authors for 2D environment and ground bots. We can try
to interpolate the method and change for the 3D environment. We will see

AStar algorithm which is basic block of this algorithm.
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5.2.1 AStar

A* is one of the famous and optimal search algorithm in path-finding. The
F, G and H are in Node class F is total cost of node. G is distance between
current node and start node. H is heuristic (estimated distance from current
node to end node). The main characteristics of a swarm robotics system are
the following:

e F=G+H

e Each step expand the node with lower value of F(n).

e if goal is reached stop, else continue.

®@ ® @ @

(A) initial Configuration (B) Final Configuratioin

FIGURE 5.2: Conflict Based Search (Multi-Agent pathplanning)
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Chapter 6
Conclusion

Swarm area is the main focus of research in this modern era. Many genetic
algorithms are introduced to replicate the behavior of nature and apply it to
robotics. In this project, we explored the main localization techniques and
with their estimation algorithms. Our experiment results show that the static
case of anchors performs better than the many other indoor positioning tech-
niques. UWB solution is also very cheaper, less space, portable, less compu-
tation as compared to other vision methods. In some of the real world, ex-
amples like a light-drone show done at Singapore on an indoor auditorium is
done by this method UWB. Our second experiment shows that it is difficult
to estimate the accurate position with moving anchors and minimum there
should be three anchors for the best position estimate. Swarm can be imple-
mented in two ways by UWB sensors, first is fit static anchors at the wall;
each vehicle has one tag sensor, giving us perfect results. Another type of
swarm which can be done in an unknown environment, where we have the
case of fitting anchor and tag on each vehicle (moving anchor), this method
performs badly for accurate localization, but, we can perform relative local-
ization using this method. Then we saw navigation algorithms which can
be applied to both exact localization and relative localization. In the future,
we will try to implement these navigational algorithms on drones and try to
solve the real world problems.
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