
Electronics Club IIT Kanpur
Swarm Robotics

by

Muskan Agarwal
Vipul Jain

Sankalp Sharma
Kaustav Sen
Piyush Singh

Sharad Gaikwad
Shourya Jain

Palashdeep Singh
Vyush Agarwal

Debashish Reang

Final Documentation
Swarm Robotics
Summer Project
Electronics Club

The Science and Technology Council
Indian Institute of Technology, Kanpur

Project Mentors:

Naveen Balaji
Soumya Ranjan Dash

Jay Mundra
Mudit Agrawal

Nitish Vikas Deshpande

Summer 2019

1

Contents
1 Introduction 5

1.1 Overview . 5

2 Problem Statement 6

3 Swarm Robotics and Multi-Robotic Systems Background 6
3.1 Social Insect Motivation and Inspiration . 6
3.2 Classification . 7

4 Components Used 8

5 Overview of our Solution Approach 8

6 Description of the Assembly and the Solution Approach 9
6.1 Hardware . 9

6.1.1 Assembling of chassis . 9
6.1.2 Running the robot using Server and Client 9
6.1.3 Powering nodeMCU using battery . 9
6.1.4 Using of IR Sensor . 10

6.2 Computer Vision . 10
6.2.1 ArUco Generation . 10
6.2.2 ArUco Detection . 11
6.2.3 Finding Distance Between 2 ArUco markers 11
6.2.4 Orienting the bot . 12

6.3 Graphical User Interface (GUI) . 12
6.4 The Arena . 13

6.4.1 Setting up of the arena . 13
6.4.2 Mapping of Arena and camera calibration 13
6.4.3 Wrapping of Perspective . 13
6.4.4 Mapping . 13

7 The Recipe 14

8 Path Planning 15
8.0.1 AStar Path Planning . 15

9 Applications 16

10 Problems Faced 16

11 Conclusion and Future Work 17

2

Abstract
Swarm robotics is an approach to the coordination of multiple robots as a system which consists
of large numbers of mostly simple physical robots. It is supposed that a desired collective
behavior emerges from the interactions between the robots and interactions of robots with the
environment. This approach developed in the field of artificial swarm intelligence, from the
biological studies of insects, ants and other fields in nature where swarm behaviour occurs [6].
In this project, we tried to simulate that swarm behaviour in that our robots to coordinate with
each other and try to form the shape that the user inputs while taking care that the distance
covered and the time taken for the formation of the shape is optimal. We also take care that
the robots do not collide while following their paths, using the Conflict Based Search (CBS)
algorithm [5] and infrared(IR) sensors. We show an example case - how the algorithm works,
and how the robots attempt to form the shape optimally. We conclude by discussing how the
model can be improved while discussing the problems we faced along the way and what future
work can be done.

3

Acknowledgements
We are grateful to the Science and Technology Council IIT Kanpur, and Electronics
Club for providing us with the resources, opportunity and motivation to carry out this summer
project. We would also like to express our gratitude to the coordinators of Electronics club:
Naveen Balaji, Soumya Ranjan Dash, Jay Mundra, Mudit Agrawal, Nitish Vikas
Deshpande, for guiding us throughout this project.

Thanks also to those numerous researchers whose work we’ve referred to in the citations.
It is because of them that the field of Swarm Robotics is getting noticed for its applications,
and its scope to get rid of many human drudgery.

4

1 Introduction
"Don’t take it all too seriously. If you want to live your life in a creative way, as an artist,
you have to not look back too much. You have to be willing to take whatever you’ve done and
whoever you were and throw them away."

– Steve Jobs

1.1 Overview

Swarm robotics is the study of how to coordinate large groups of relatively simple robots
through the use of local rules. It takes its inspiration from societies of insects that can perform
tasks that are beyond the capabilities of the individuals. Beni [1] describes this kind of robots’
coordination as follows:

The group of robots is not just a group. It has some unique characteristics, which are found
in swarms of insects, that is, decentralised control, lack of synchronisation, simple and (quasi)
identical members.

In this report we realize the project we carried out over the summer in this field of multi-
robotic systems. The aim is to give a glimpse of swarm robotics and its applications, correctly
form shapes using coordinated movement of robots as specified by the user input. Section 2
describes the problem we attempted to solve formally. In Section 3, we give a brief background
on swarm robotics as a sub-field of robotics, while the motivation and inspiration of swarm
robotics taken from social insects is also explained. Section 3 continues addressing the main
characteristics and classification of swarm robotics. Sections 4 and 5 lays the foundation to
our solution approach. A detailed layout of the components used, and the methods devised is
given in Section 6. Section 8 discusses the possible applications of swarm robotics in the near
future. We discuss the problems we faced in Section 9, while laying down the foundation for
future work in Section 10.

Figure 1: Human Rescue using four robots. This image is taken from an actual research
paper by Madhav D Patil and Tamer Abukhalil.

5

2 Problem Statement
"We may hope that machines will eventually compete with men in all purely intellectual fields.
But which are the best ones to start with? Even this is a difficult decision. Many people think
that a very abstract activity, like the playing of chess, would be best. It can also be maintained
that it is best to provide the machine with the best sense organs that money can buy, and then
teach it to understand and speak English. This process could follow the normal teaching of a
child. Things would be pointed out and named, etc. Again I do not know what the right answer
is, but I think both approaches should be tried."

– Alan Turing, Computing Machinery and Intelligence (1950)

Given a user input from the GUI, the robots should collectively try to emulate the shape as
closely as possible while avoiding collision with each other, at the same time taking the shortest
possible path and the optimal time to cover their respective paths.

The following block illustrates the task for 1 robot:

def Swarm(GUI_INPUT) :
GUI_INPUT has s t a r t , end co−ord ina t e s
s t a r t , end = GUI_INPUT

endNotReached = True

while endNotReached :
move forward
avoid c o l l i s i o n

i f not endNotReached :
notReached = False

return None

3 Swarm Robotics and Multi-Robotic Systems Background

3.1 Social Insect Motivation and Inspiration

The collective behaviours of social insects, such as the honeybee’s dance, the wasp’s nest-
building, the construction of the termite mound, or the trail following of ants, were considered
for a long time strange and mysterious aspects of biology. Researchers have demonstrated in
recent decades that individuals do not need any representation or sophisticated knowledge to
produce such complex behaviours [3]. In social insects, the individuals are not informed about
the global status of the colony. There exists no leader that guides all the other individuals to
accomplish their goals. The knowledge of the swarm is distributed throughout all the agents,
where an individual is not able to accomplish its task without the rest of the swarm.

Social insects can exchange information, and for instance, communicate the location of a
food source, a favourable foraging zone or the presence of danger to their mates. This interaction
between the individuals is based on the concept of locality, where there is no knowledge about
the overall situation. The implicit communication through changes made in the environment
is called stigmergy. Insects modify their behaviours because of the previous changes made by

6

their mates in the environment. This can be seen in the nest construction of termites, where
the structure of the nest determines the changes in the behaviours of the workers.

Organisation emerges from the interactions between the individuals and between individuals
and the environment. These interactions are propagated throughout the colony, and therefore,
the colony can solve tasks that could not be solved by a sole individual. These collective be-
haviours are defined as self-organising behaviours. Self-organisation theories, borrowed from
physics and chemistry domains, can be used to explain how social insects exhibit complex collec-
tive action that emerges from interactions of individuals behaving naturally. Self-organisation
relies on the combination of the following four basic rules: positive feedback, negative feedback,
randomness, and multiple communications.

3.2 Classification

In this section, we classify and characterise swarm robotics using the most known taxonomies
and classifications in the multi-robotic systems’ literature. Dudek et al. define a taxonomy [2] in
which different axes are used to characterise multi-robotic architectures using their properties.
The taxonomy axes are summarised in Table 1, directly extracted from the author. Using
this classification, properties are assigned to each one of the axes, for a generic swarm-robotic
architecture, although these properties would depend on the concrete architecture. Collective
Size is SIZE-INF, that is, the number of robots N » 1, in opposition to SIZE-LIM, where the
number of robots is small compared to the size of the task or environment. This expresses the
scalability aimed in swarm-robotic systems. Communication Range is COM-NEAR, robots can
only communicate with robots which are close enough. Communication Topology for a swarm
system would be generally Communication Bandwidth is BAND-MOTION, communication
costs are of the same magnitude as the cost of moving the robot between locations. Collective
Reconfigurability is generally ARR-COMM, this is, coordinated rearrangement with members
that communicate; but it could also be ARR-DYN, dynamic arrangement, positions can change
arbitrarily. Process Ability is PROC-TME, where computational model is a turing machine
equivalent. Lastly, Collective Composition is CMP-HOM, meaning that robots are homogeneous
[4].

Figure 2: Classification of Swarm robotics per Dudek et al.

7

4 Components Used
We will label each bot with a serial number by mounting an ArUco marker on top of it and
align them accordingly with the help of a camera placed on the top of the arena. Each bot has
the following essential components -

Figure 3: Components Used

• Motor Driver

• 3 wheels(2 wheels and 1 caster wheel)

• A Micro controller or nodeMCU

• A battery Pack to drive motors and rest of the components

• 4 IR sensors to avoid obstacle at local level

• Logitech Web-Cam

5 Overview of our Solution Approach
In our solution approach to the problem we are using ArUco markers on individual robots to
detect and uniquely identify them in the arena. We have an overhead camera mounted to
capture the view of the whole arena continuously. But, there is a catch - the image captured
can be in different perspectives depending upon the orientation of the camera and the level of
arena surface. To tackle this we have mapped the arena so that any perspective can be resolved
into a single 2-D flat feed. The mapped feedback that we get from the camera consists of the
location of each robot on the arena (as mapped by us). The user then inputs any shape into the
GUI, which we map to the arena as the final coordinates that the bots must move to. We use
CBS (Conflict-Based Search) path planning algorithm which follows A-star path planning for
individual robot navigation and a conflict based solution approach to avoid intersecting paths,
and hence collision. We have also implemented IR sensor based collision handling which will
ensure that there is no collision even in the event of the failure of the algorithm or if the paths
get too complex.

8

6 Description of the Assembly and the Solution Approach

6.1 Hardware

6.1.1 Assembling of chassis

Figure 4: Our Bot

This is the image of the robot that we made using motor drivers, nodeMCU and motors. We
attach the nodeMCU by PC so that we can set up a server, such that all bots will be able to
communicate each other. Then we attach both motors and the motor driver on the chassis.
Then we upload the code from the PC to the nodeMCU. We monitor the bots by the client and
server.

6.1.2 Running the robot using Server and Client

For working of robot, we used the robot as client and gave input from the server created on
the PC. To give wireless input we used ESP8266. For controlling the speed of bot and for
its movement in different directions we used motor drivers. Motor driver is connected to the
nodeMCU which gives the command to motor driver received from ESP8266.

6.1.3 Powering nodeMCU using battery

Firstly we were powering the nodeMCU using power bank, but it created problem due to its size.
So now we are powering it through motor driver which gives output of 5V.

9

6.1.4 Using of IR Sensor

Figure 5: IR Sensor

IR sensors are used to avoid collision between the robots while they are traversing towards
the final goal. If each bots moves to its nearest goal then there is rare chance of collision. But
due to some errors in hardware bots don’t always move in straight line. The code that we
implemented either stops the robot or redirects its path if it comes too close to another bot.
This way we achieve the best of both worlds.

6.2 Computer Vision

6.2.1 ArUco Generation

We used OpenCV in Python to generate the code for ArUco Marker. An ArUco marker is a
synthetic square marker composed by a wide black border and a inner binary matrix which
determines its identifier (id). The black border facilitates its fast detection in the image and the
binary codification allows its identification and the application of error detection and correction
techniques. The marker size determines the size of the internal matrix. It must be noted that
a marker can be found rotated in the environment, however, the detection process needs to be
able to determine its original rotation, so that each corner is identified unequivocally.

Figure 6: ArUco markers

10

Figure 7: ArUco markers

6.2.2 ArUco Detection

Given an image where some ArUco markers are visible, the detection process has to return a
list of detected markers. Each detected marker includes:

• The position of its four corners in the image (in their original order).

• The id of the marker.

• The marker detection process is comprised by two main steps:

– Detection of marker co-ordinates. In this step the image is analyzed in order to
find square shapes that are co-ordinates to be markers. It begins with an adaptive
threshold to segment the markers, then contours are extracted from the threshold
image and those that are not convex or do not approximate to a square shape are
discarded. Some extra filtering are also applied (removing too small or too big
contours, removing contours too close to each other, etc).

– After the co-ordinate detection, it is necessary to determine if they are actually
markers by analyzing their inner codification. This step starts by extracting the
marker bits of each marker. To do so, first, perspective transformation is applied
to obtain the marker in its canonical form. Then, the canonical image is threshold
using Otsu to separate white and black bits. The image is divided in different cells
according to the marker size and the border size and the amount of black or white
pixels on each cell is counted to determine if it is a white or a black bit. Finally, the
bits are analyzed to determine if the marker belongs to the specific dictionary and
error correction techniques are employed when necessary.

In the ArUco module, the detection is performed in the detectMarkers() function.

6.2.3 Finding Distance Between 2 ArUco markers

Finding the distance between ArUco markers is of immense importance for completion of our
task, which is, to move one bot from one location to other(goal position). The goal location
is a coordinate in the arena (that we mapped) as determined by us and the user input. The
robots then find a path that is optimal in terms of distance and time, from the start point

11

to the end. The infrared(IR) sensors mounted on the bots avoid local collision, hence safely
getting the bots to their destination and forming the desired shape.

6.2.4 Orienting the bot

Figure 8: Orientation of bot

For this we used a very useful fact that the axes in ArUco markers are pre-defined, So we
fixed the bot’s head with the x-axis of the ArUco marker. So when bot turns then the axis of
ArUco marker also turns. Then we used a inbuilt function to calculate angle of axis of ArUco
marker with x-axis (angle 1). Then we used same function to calculate angle of line joining
the centres of two ArUco marker with x-axis (angle 2). When the two angles mentioned above
became equal then the rotation is stopped.

6.3 Graphical User Interface (GUI)

Figure 9: Our GUI. The S is input by the user, we select the blue dots which correspond to
each of our bot’s final goal.

12

6.4 The Arena

6.4.1 Setting up of the arena

A rectangular mattress is laid as the arena. The colour of the map is dark so that it can be
easily contrasted from the ground on which it is kept. Setting up of arena is important so that
we can stop bots from going out of camera vision at any instance. The surface of arena should
also be such that wheels of bot don’t slip.

6.4.2 Mapping of Arena and camera calibration

Today’s cheap pinhole cameras introduces a lot of distortion to images. Two major distortions
are radial distortion and tangential distortion. For stereo applications, these distortions need
to be corrected first. To find all these parameters, what we have to do is to provide some
sample images of a well defined pattern (eg, chess board). We find some specific points in it
(like square corners in chess board). We know its coordinates in real world space and we know
its coordinates in image. With these data, some mathematical problem is solved in background
to get the distortion coefficients.

Figure 10: Checker Box

6.4.3 Wrapping of Perspective

As it is clear from the picture below, that ’Wrapping of Perspective’ means that whatever be
the image viewed through the camera, it must be transformed to normal view and crop out
the extra portion to get the output image as shown. This is done to achieve the real pixel
co-ordinates of the arena with one corner as (0,0). With this un-distort function is also used

6.4.4 Mapping

After the work of wrapping of perspective is done. The top left corner of the cropped image
automatically gets pixel coordinates as (0,0). Now every coordinate in the arena can be easily
known with respect to one of the vertex. This will also help in doing path planning tasks. This
can also be used in motion code of bots to restrict them inside the arena.

13

Figure 11: Wrapping of Perspective using OpenCV

7 The Recipe

Webcam captures Video

Image Processing

ArUco Marker Detection

Orientation and Location identified

Sending Commands to nodeMCU

nodeMCU drives Motors using Motor Divers

IR sensor detects other bots to avoid collision

Bot orients and moves to final goal

Flowchart: The Recipe - Our approach in a nutshell.

14

8 Path Planning

Figure 12: CBS GUI

Basically CBS takes all possible path for each and every bot from start to goal by the use
of AStar.Then it recursively checks if their is any chances of collision of any bot, then it rejects
path having chances of collision and finally gives the path having minimum cost.

Figure 13: Path Planning

8.0.1 AStar Path Planning

The only difference in AStar and Dijkstra is that heuristic function in Dijkstra is always zero
independent of node (Heuristic function calculates the displacement between current node and
final goal). That’s why AStar is more efficient than Dijkstra.

In AStar bots moves to the node having minimum ’f’ value.
f = g + h
g :- Distance between current node and next node.
h :- Displacement between next node and final goal.

15

9 Applications
• Our bot can be used to do a work which one bot cannot do, like shape formation, moving

by maintaining a shape, pushing or lifting a heavier object, moving up the steep incline.

• Disaster rescue missions is one of the most important applications of swarms robots.

• Swarms robots can be used in military to form an autonomous army or IRON MAN kind
of suit.

• Swarm robotics, in particular, is considered extremely relevant for precision farming and
large-scale agricultural applications.

• Swarms robots can be for Exploration and mapping it would save time.

• In medical fields, a use of nano-robots moving through human veins and arteries (e.g. to
fight certain types of cancer)

• Can be used in public places for cleaning, in restaurants for serving purposes.

• The number of possible applications is really promising, but still the technology must
firstly be developed both in the algorithmic and modelling part, and also in the minia-
turization technologies.

Figure 14: Applications in Military

10 Problems Faced
• The camera which we were using earlier was not able to detect ArUco marker on the bot

continuously . So, our bot was moving with the initial command which it had received
from the server.

• Camera was not able to track the movement of ArUco so to avoid randomness we had to
stop the bot every time the camera was not able to recognise the ArUco.

• Because the arena was not entirely black we faced problem while mapping we tried ad-
justing the threshold but at last we decided to do it manually by choosing the region of
interest.

16

• We had to decrease the fps of camera so that there is no lagging so to that we increased
the resolution of the camera.

• To overcome static friction we had to give impulse to our bots.

11 Conclusion and Future Work
• Localization can also be done through WiFi. We can do faster and precise localization

of bots using UWB(Ultra Wide-band) sensor and make swarm more robust to use in a
room. Also we can change the algorithm of path planing and motion for achieving goal of
each bot in a faster way. Also we can use Boids model which is exhibited by birds during
their travelling from one location to other.

By the end of this summer project we are able to move bots from any given position and
orientation to goal coordinates and form a shape or letter without bots colliding. Finally
decentralization should be achieved to complete swarm robotics like the insects, bird or animals.
And more future goals are same as application’s first point.

17

References
[1] G. Beni. From swarm intelligence to swarm robotics. Swarm Robotics Lecture Notes in

Computer Science, page 1–9, 2005.

[2] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent robotics.
Autonomous Robots, 3(4), 1996.

[3] S. Garnier, J. Gautrais, and G. Theraulaz. The biological principles of swarm intelligence.
Swarm Intelligence, 1(1):3–31, 2007.

[4] I. Navarro and F. Matía. An introduction to swarm robotics. ISRN Robotics, 2013:1–10,
2013.

[5] G. Sharon, R. Stern, A. Felner, and N. Sturtevant. Conflict-based search for optimal multi-
agent path finding. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, AAAI’12, pages 563–569. AAAI Press, 2012.

[6] Wikipedia contributors. Swarm robotics — Wikipedia, the free encyclopedia, 2019. [Online;
accessed 8-July-2019].

18

