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Abstract

This paper presents a range-based localization scheme for multi-rotor sys-
tems in GPS denied environments and proposes a novel methodology to esti-
mate yaw attitude. The attitude and position are estimated using a Bayesian
framework using accelerometers, gyroscope, and a set of ultra-wideband
(UWB) range sensors, with an optimization technique for tuning of the es-
timator’s parameter (covariance matrices). In addition to this, heading es-
timation is incorporated without the aid of magnetic sensors. Extended In-
formation Filter (EIF), which is dual of Kalman filter, is used to reduce time
complexity in the localization. All family of Gaussian filters requires the cor-
rect noise parameters for convergence and efficient estimation. A Particle-
Swarm Optimization (PSO) method is used for the tuning of noise covariance
in these filters with known ground truth in the initial flight. The effectiveness
of tuned EIF is validated on the quadcopter platform with different environ-
ments which shows superior performance compared to the manually picked
noise parameter.

Keywords:- Unmanned Aerial Vehicles, Gaussian filters, Swarm Robotics,
GPS denied Navigation

.
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Chapter 1

Introduction

Autonomous aerial systems capable of sensing and perceiving the en-
vironment have been the area of intense research due to their limitless ap-
plications, ranging from surveillance, precision agriculture, infrastructure
inspection, photography, recreation etc. Unmanned Aerial Systems (UAS),
such as quadcopters and unmanned helicopters, offer robust maneuverabil-
ity with vertical takeoff and hovering capabilities on the three-dimensional
airspace. They can perform tracking [13], inspections [19], and transporta-
tion [21] more quickly, economically, and safely compared to other compa-
rable robots. The deployment of sophisticated sensors is incrementally en-
hancing the intelligence of these aerial robots [8], enabling them to achieve
autonomous navigation in complex and confined environments. The appli-
cations related to inspection and surveillance of commercial installations re-
quire these UAS to operate in GPS shadow areas where GPS signal reception
may be diminished and less reliable. Further, the reliance of magnetometer
for heading estimate is severely compromised if the UAS has to operate near
large iron structures such as large cranes due to magnetic deviation.

Indoor Positioning System (IPS) becomes critical for many autonomous
operations requiring application of UAS in GPS denied environments. Vi-
sual odometry for mobile robotics using feature tracking based on monoc-
ular and stereo-vision has been an active area of research to address indoor
localization [23, 3, 4]. However, the solutions are sensitive to ambient light-
ing conditions, motion blur, and other artifacts that deteriorate image qual-
ity. Visual-inertial methods improved localization precision by eliminating
scale factor error in the image with the fusion of inertial measurement unit
(IMU) data [9]. The accumulation of drift in these methods are typical over
time, thus cannot be used for long duration flights. Other SLAM based ap-
proaches popular among ground robots either use RGB-D cameras [12] or 3D
lidars [25]. However, these approaches are often computationally expensive
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and time-intensive. They typically require onboard GPU computing abil-
ity to process the data in real-time, which increases the power requirements
and the overall weight of the system, thereby further compromising the en-
durance of aerial vehicle.

The wireless localization system, such as Radio Frequency Identification
(RFID) [27], Wi-Fi [20], Zigbee [24] and Ultra-Wideband (UWB) [5], are emerg-
ing technologies for indoor localization solutions. Due to the unsatisfied
accuracy of the received signal strength (RSS) techniques [22], they have
not been found suitable for UAVs. Recently, UWB based technologies have
gained momentum in this field. With the large bandwidth, this signal has
the properties of strong multi-path resistance, which enables accurate rang-
ing via communication by the two-way time of flight. They are low-cost,
low-power, portable, robust and easy to implement in any environment.

The present work is an extension of the approach followed in [11], which
focused on developing a pose estimation framework for a quadcopter rely-
ing on MARG (inertial) sensor array, an optical flow camera, and an Ultra-
wideband (UWB) range sensor to correct the drift of the estimator over time.
In this paper, use of multiple UWB sensors is proposed along with inertial
sensors without any optical cameras for localization. Although some earlier
research has focused on implementing Bayesian filter based state estimation
using UWB sensors [18, 15], it did not focus on optimizing the performance.
The method used in this research aims to reduce the complexity of the al-
gorithm using the extended information filter. The Gaussian filters require
a model of the system, comprising of a state function, measurement func-
tion, and the associated noise terms. The noise terms related to it are often
difficult to estimate. The inaccurate noise model can cause perturbation in
the estimation, which will lead to divergence of the filter. There are optimal
ways to adapt a filter according to the need [26]. Noise covariance can be
estimated by minimizing the cost function, with the known ground truth of
the vehicle. In this paper, various criteria for tuning the filter are discussed,
and the Particle Swarm Optimization (PSO) is used for determining the best
noise covariance.

Real-time tracking of the heading angle in rigid bodies has wide applica-
tions in robotics fields [6]. Inertial and magnetic sensor modules with their
associated data filtering algorithms are designed for estimating the attitude
of the object [17]. The famous estimation algorithms such as [16], allows
accurate evaluation of pitch and roll attitude but are not robust for yaw esti-
mations over time. The sources of magnetic interference are always present
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in common items such as current-conducting wires, batteries, and ferrous
materials. Today there are many hybrid solutions such as [7], with expensive
multiple sensors, to be used in the industrial environment for the estimation
of the heading. This paper proposes to solve the problem of yaw estimation
through a novel low-cost yaw estimation method without drift which can be
used on UAS as fail-safe in the event of deterioration in yaw estimates from
conventional MEMS magnetometers.

The remainder of the paper is structured as follows: the background work
and problem statement is summarized in Sec. II. The localization and head-
ing algorithms are given in Sec. III. The method of tuning the noise parame-
ters based on PSI is given in Sec.IV. The experimental results and discussion
are provided in Sec. V and concluding remarks are given in Sec. VI.
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Chapter 2

BACKGROUND

2.1 Ultra-Wide Band Sensors

UWB sensor is a wireless sensor that transmit signals at 3-8 (GHz) band-
width, offers high accuracy of signal with low power. It can measure dis-
tance through Time of Flight (ToF) of the radio signal, providing measure-
ment range up to 200 m. The commercial-off-the-shelf UWB product De-
cawave DWM1001 [1] modules are used for the implementation of method-
ology proposed in the current paper. DWM1001 module has two modes:
anchor mode (sending signal) and tag mode (receiving signal). The mod-
ules provides real-time location by the two-way ranging method. Then re-
peated reply algorithm is used to measure the time of flight between a tag
and an anchor module. By subtracting the locally measured processing time
(QRx

M2
− QRx

M1
) from the round-trip time (QRx

M1
− QTx

M0
) of the signal, the time

of flight (TOF) can be estimated by

ZToF = QRx
M1
−QTx

M0
− δQ (2.1)

The detail explanation of range estimation using two-way ranging method is
available in [10].

2.2 Problem Statment

The primary aim of this work is to localize an aerial vehicle (quadcopter) us-
ing IMU and UWB sensors. The UWB sensors are arranged at the corners of
a rectangle to maintain a line-of-sight to the quadcopter as shown in Fig. 2.1.
The current work uses a 3-axis MEMS accelerometer, a 3-axis MEMS gyro-
scope, and a 3-axis MEMS magnetometer as the inertial sensors equipped
in the flight controller, which is a low-cost Invensense MPU6000 series. For
magnetometer-free yaw estimation, measurements from magnetometer are
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discarded and another set of position measurement is used using another
UWB sensor, the details are given in the next section. Bias in both acceler-
ation and angular velocity is considered and explicitly estimated. All these
sensors provide information on their local body frame. Due to the inconsis-
tency of built-in barometer in the flight controller, a one-dimensional lidar
in also incorporated to measure the altitude of the vehicle accurately. The
ground truth reference is obtained using an eight camera Vicon motion cap-
ture system in indoor that provides precise estimates at 100 Hz.

FIGURE 2.1: The UWB sensors based localization architecture

For control, the multi-copter position controller in PixHawk is initially
tuned with the motion capture system. A Raspberry Pi 3 running Ubuntu
mate is used as an onboard computer. Robot Operating System (ROS) envi-
ronment is used for the state estimator implementation that communicates
with the flight controller to provide high-level position and heading com-
mands via the mavlink protocol. The quadcopters generally provide their
local orientations, acceleration with respect to ENU (East-North-Up) frame.
Since the UWB anchors used in current study are set up in a different direc-
tion, the UWB position estimates need to be transformed to ENU frame by
rotating with the yaw offset before sending this data to the flight controller.
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Chapter 3

Localization

In this section, a localization problem using UWB sensors in a given environ-
ment is considered. The suite of UWB sensors acts as GPS and is integrated
with IMU to provide accurate localization. Let A, B, C, D be the position of
fixed anchors, as shown in Fig. 3.1, with respect to the inertial frame of refer-
ence. Let p = (px, py, pz) be the vehicle co-ordinate that need to be estimated
by a localization algorithm when provide with distances d1, d2, d3, and d4 as
follows:

(P− A)2 = d2
1; (P− B)2 = d2

2; (P− C)2 = d2
3; (P− D)2 = d2

4;

The above set of equations can be solved either using nonlinear least square
(NLS) method or using a (Bayesian) filter. As known the solution of NLS is
corrupted with noise, therefore the filter based method is employed in this
work. Extended Information Filter (EIF) is used due to its ease of implemen-
tation and time complexity.

3.1 Extended Information Filter

The EIF is an algebraic equivalent of the EKF in which Gaussian is parametrized
by information vector, ξ, and information matrix, Ω, rather than the mean
and covariance. For nonlinear state estimation with multi-sensor measure-
ments, the EIF is preferred over the EKF. The prediction and update steps of
EIF for localization are described below:

Prediction Step

The inertial sensor, accelerometer and gyroscope data is used for predic-
tion. A constant acceleration model is considered for prediction step with
acceleration bias, ab = [abx, aby, abz]. The state transition model is given as
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FIGURE 3.1: Point form of the problem statement

follows:

pk = pk−1 + vk T +
ak T2

2
− abk T2

2
(3.1)

where p is the position vector, v is the velocity, the acceleration vector given
by

ak = Rk ~akbody +~g

at kth time step, and T is time interval taken for integration. Here R is a rota-
tion matrix from the body to inertial frames. The state vector for localization
and bias estimation is defined as

x = [px , vx, abx , py , vy , aby , pz , vz , abz ]
T

Having defined this, the information vector and matrix are given as follows:

ξk = Σ−1
k xk Ωk = Σ−1

k (3.2)

where Σk is the covariance matrix at time step k. The prediction steps are
given as

ξ̂k = Ω̂k

(
Ak Ω−1

k−1 AT
k + Bk uk

)
(3.3)

Ω̂k =
(

Ak Ω−1
k−1 AT

k + Qk

)−1
(3.4)
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where uk = [ axK, 0, 0, ayK, 0, 0, azK, 0, 0 ]T and

Ak =

A
′
k 0 0

0 A
′
k 0

0 0 A
′
k

 , A
′
k =

1 T −T2

2

0 1 −T
0 0 1



Bk =

B
′
k 0 0

0 B
′
k 0

0 0 B
′
k

 , B
′
k =


−T2

2 0 0
T 0 0
0 0 0


where Qk is the process noise. The process noise matrix is ideally modeled, in
order to obtain the Markov property, which is required in recursive Bayesian
inference. It is assumed that Qk is a function of a single variable (τa for aworld

and τb for abias) which is approximated to be constant over time [14]. The
continuous time zero-mean white noise modeled with bias superposition for
the system is:

Q
′
k =



T3τa
3 + T5τb

20
T2τa

2 + T4τb
8 −T3τb

6

T2τa
2 + T4τb

8 T2τa +
T3τb

3 −T2τb
2

−T3τb
6 −T2τb

2 −T3τb


UWB Measurement Update

The range measurements obtained from the UWB senors for the update
equation is

rk =

[√
(px− pxi)2 + (py− pyi)2 + (pz− pzi)2

]
where (pxi, pyi, pzi) is the known position of anchor modules. The measure-
ment update is carried out as following

ξk = ξ̂k + HT
k R−1

k [rk − h(x̂k) + Hk x̂k] (3.5)

Ωk = Ω̂k + HT
k R−1

k Hk (3.6)

where hk is the measurement model given by rk, h(x̂k) is computed at x̂k,

Hk =
∂h
∂xk

=

[
px− pxi

r̄k
, 0, 0,

px− pxi

r̄k
, 0, 0,

px− pxi

r̄k

]T
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. In the above equation, Rk is measurement noise. In addition to this, the
median filter ise used to remove the outliers of UWB readings that will re-
sult in a sudden change of the estimated position. The difference between
the predicted distance h(x̂k) and the actual UWB measurements rk as dk =

|h(x̂k)− rk| is calculated and if the error term is over a certain threshold, the
measurement is discarded.

Height Measurement Update

The altitude measurement obtained from the 1D lidar for update step is

lk = [z]

The measurement matrix for updating height [z] is

Hk = [ 0, 0, 0, 0, 0, 0, 1, 0, 0 ]

The information vector and matrices are updated using (3.5) and (3.6).

FIGURE 3.2: Yaw Estimation in fixed inertial frame
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3.2 Yaw Estimation

For the yaw estimation, the UAS system is enhanced by mounting two UWB
sensors on the quadcopter along with MARG sensors, as shown in Fig. 3.2.
In order to determine yaw, the position of each sensor is estimated first using
the approach described above. The modified state vector is given as

x = [px1 , px2 , vx , abx , py1 , py2 , vy , aby , pz1 , pz2 , vz , abz , θ ]T

Using these position, the yaw measurement is computed as

θ = cos−1
(

px2 − px1

dk

)
where

dk =
√
(px2 − px1)2 + (py2 − py1)2 + (pz2 − pz1)2

. The control vector, u, now has a extra input, ω, about the fixed inertial
frame z-axis. For The dynamics is the same as described in the previous
section. The Jacobin computed for this correction step is the

Hk = [

√
dk

2 − (px2 − px1)2

dk
2 ,−

√
dk

2 − (px2 − px1)2

dk
2 , 0, 0,

−
(py2 − py1).(px2 − px1)

dk
2.
√

dk
2 − (px2 − px1)2

,
(py2 − py1).(px2 − px1)

dk
2.
√

dk
2 − (px2 − px1)2

, 0, 0,

− (pz2 − pz1).(px2 − px1)

dk
2.
√

dk
2 − (pz2 − px1)2

,
(pz2 − p1).(px2 − px1)

dk
2.
√

dk
2 − (px2 − px1)2

, 0, 0, 1 ]T

The roll and pitch attitude are estimated by the internal attitude heading
reference system (AHRS) using IMU, which provide reasonable estimates in
different operating conditions. In our experiment, the state estimation is car-
ried out at 30Hz. Other sensors output frequency are lidar (20HZ), 2 [4 UWB
sensors (10HZ)].
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Chapter 4

Tuning

4.1 Learning the filter parameters

The learning techniques used for obtaining the noise parameters of EIF de-
scribed in the previous section is described in this section. For simplicity,
the discussion focuses on learning state-model and sensor noises, assuming
that the dynamics considerations in vehicle state-model equations are per-
fect. Thrun and Andrew [2] have discussed various methods to train the
noise parameter for the Kalman filter during the initial test. In this work,
the minimization of residual prediction error is considered. The prediction
error minimization technique seeks the parameter R and Q (assumed to be
constant) that minimizes the quadratic deviation of z (ground truth) and its
expectation, weighted by information matrix Ω.

< Qres, Rres > = arg min
R,Q

N

∑
t=0

(zt − νt)Ωt(zt − νt)
T (4.1)

where N is the total number of steps considered for training.

4.1.1 PSO implementation

The PSO was derived from the concept of swarming habits of animals such
as birds or fish and have been implemented for many applications. The PSO
algorithm maintains multiple potential solutions at one time and consists
these steps: (i) Evaluate the fitness of each particle; (ii) Update individual
and global bests; and (iii) Update velocity and position of each particle. In
the tuning process, the filter covariance matrices, Q and R, are estimated as
follows. At first, the noise matrices are reduced as a function of a single vari-
able for simplicity. The problem is posed as to find best fit system noise (τa),
inertial system bias noise (τb), and noise of UWB (R) subject to (4.1). The
pseudo code of implementation is given in Algorithm 1. The weights c1, c2,
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c3 constraints the searching time and space. The number of iteration and
particles should be chosen based on the desired accuracy.

Algorithm 1 PSO implementation
CostFunction (particle_i)

1: (τa, τb, R) = particle_i.pose
2: Evaluate(τa, τb, R) {residual prediction error}
3: returns error

Update_velocity (particle_i)
1: vel_cognitive = c1 (pose_best_i− self.position_i)
2: vel_social = c2 (global_best_pose− self.position_i)
3: Total_velocity= c3.velocity_i+vel_cognitive+vel_social
4: returns velocity

1: number of particles =10
2: Initialize all 10 particles with suspected (τa, τb, R)
3: max_iteration = 30
4: for i in max_iteration do
5: for j in number of particles do
6: Costfunction(particle_j)
7: if particle_j.error < particle_j_min_error then
8: particle_j_pose_best = particle_j.pose
9: particle_j_minerror = particle_j.error

10: end if
11: if particle_j.error < global_min_error then
12: particle_j.pose_best = global_best_pose
13: particle_j.minerror = global_min_error
14: end if
15: for j in number of particles do
16: Update_velocity(particle_j)
17: particle_j.pose=particle_j.pose+particle_j.velocity
18: end for
19: end for
20: end for
21: return(global_best_pose)
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Chapter 5

Results

5.1 Experimentation results

A series of experiments in the indoor lab setup are performed to demon-
strate the accuracy of our position and attitude estimator on a quadcopter
model. We first analyze the result of hand-tuned EIF covariance based on
the property of system and measurement noises. Then, the training data set
for establishing the ground truth is collected using motion capture system.
The tuning of covariance is performed offline using the optimization method
described in the previous section. The next set of experiments is conducted
with the optimized noise parameters.

Position Estimation Accuracy

The initial experiment is conducted using a single UWB receiver (tag) placed
on the quadcopter for simple position estimation. The initialization of posi-
tion in EIF is done by least square method. There is no drift in the system;
the quadcopter is able to maintain position hold for long duration. The UWB
range sensor is accurately localized within error range of 0.2m when com-
pared to ground truth values. The use of sonar in indoor gave good results
in the z height estimates as compared inbuilt barometer data. The z RMS
error for the localization comes out to be 0.048m.

Attitude accuracy

The roll and pitch attitude estimation is given by regular algorithm on Pix-
hawk stack. The heading angle estimated by this method suffered constant
deflection in the indoor environment. Two UWB’s are placed on quadrotor
for yaw estimation. Our solution for yaw estimation has no deflections and
no drift over time. The gyroscope (ω) about vertical axis is able respond to
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(A) Trajectory of state estimator in x-y plane

(B) Position error in x and y directions

FIGURE 5.1: Indoor Localization Results of the quadcopter
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FIGURE 5.2: Convergence of cost function error in PSO algo-
rithm

FIGURE 5.3: Accuracy of yaw estimation
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the precise change in angle at 100Hz; the UWB sensors are able to keep the
system from drifting away, unlike the magnetic compass.

Training accuracy

The hand-tuned filter noises fit well in some instances but when the ag-
gressive maneuvers are performed, the filter sensitivity is inadequate. The
optimization method of determining covariance with the training data is a
quick process and results in precise results. The PSO algorithm valuated
with weight c1 = 1, c2 = 1, c3 = 0.55 converged within 30 iterations and
provided us τa = 0.151, τb = 1.37 and R = 0.18 . The latency is tested by
conveying this pose back to the flight controller, for predefined trajectory
navigation. The quadcopter is able to perform well in offboard mode using
this localization process.

Position Error X axis Y axis Z axis YAW
Untrained EIF 0.273m 0.257m 0.063m 0.28 (rad)
Trained EIF 0.166m 0.189m 0.048m 0.17 (rad)

TABLE 5.1: Performance of Localization
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Chapter 6

Conclusion

In this paper, We discussed a novel localization methodology that can be
used on aerial vehicles for industrial automation, irrespective of the envi-
ronmental conditions, and external interference. The position and yaw es-
timation were implemented based on Information filter; the results are ob-
served to be driftless over time. Next, the tuning of the filter parameters is
performed using PSO. The optimization technique is used to obtain noise
covariance based on minimum prediction criteria. Experiments conducted
both in the indoor and outdoor environment validated the fitness of the ap-
proach. We conclude from the performance of this approach in the flight test
that it can be deployable for the realistic environment. The yaw estimates ob-
tained are promising and can be used as a failsafe to revert to in case of large
magnetic deviation in conventional MEMS magnetometer. The proposed so-
lution can be extended to coordinate multiple vehicles in the indoor arena in
real-time.
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